NMR and Molecular Recognition of N-Glycans: Remote Modifications of the Saccharide Chain Modulate Binding Features

Ana Gimeno, Niels-Christian Reichardt, F. Javier Cañada, Lukas Perkams, Carlo Unverzagt, Jesús Jiménez-Barbero, Ana Ardá

ACS Chemical Biology 2017 12 / 4 (1104-1112)


Glycans play a key role as recognition elements in the communication of cells and other organisms. Thus, the analysis of carbohydrate–protein interactions has gained significant importance. In particular, nuclear magnetic resonance (NMR) techniques are considered powerful tools to detect relevant features in the interaction between sugars and their natural receptors. Here, we present the results obtained in the study on the molecular recognition of different mannose-containing glycans by Pisum sativum agglutinin. NMR experiments supported by Corcema-ST analysis, isothermal titration calorimetry (ITC) experiments, and molecular dynamics (MD) protocols have been successfully applied to unmask important binding features and especially to determine how a remote branching substituent significantly alters the binding mode of the sugar entity. These results highlight the key influence of common structural modifications in natural glycans on molecular recognition processes and underscore their importance for the development of biomedical applications.

Specific anti-glycan antibodies are sustained during and after parasite clearance in Schistosoma japonicum-infected rhesus macaques

Y. Y. Michelle Yang, Xiao Hong Li, Katarzyna Brzezicka, Niels-Christian Reichardt, R. Alan Wilson, Angela van Diepen, Cornelis H. Hokke

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005339


Schistosomes express many glycan antigens to which antibodies are raised by the infected host. These glycans may therefore form potential vaccine targets. Unlike humans where the disease persists chronically if not treated, schistosome-infected rhesus macaques are able to elicit a self-cure process naturally. To find out if anti-glycan responses could contribute to the natural clearance process, we followed the dynamics of anti-glycan serum antibodies in Schistosoma-infected macaques in a longitudinal study starting from the onset of infection until 22 weeks post-infection, when the macaques had eliminated most of the parasites. We found that sera of macaques taken after 22 weeks of infection contained high IgG titres towards specific schistosome glycan epitopes highly abundant on schistosome larvae. Moreover, infected macaque serum at week 22 was able to kill schistosomula in vitro. Our results suggest that anti-glycan antibodies play an important role in the self-cure process and the acquired resistance to re-infection in Schistosoma infected macaques.

Pseudo-Mannosylated DC-SIGN Ligands as Immunomodulants

A. Berzi, S. Ordanini, B. Joosten, D. Trabattoni, A. Cambi, A. Bernardi and M. Clerici

Scientific Reports 2016, 6, article number 35373; DOI:10.1038/srep35373


DC-SIGN, a C-type lectin mainly expressed by DCs, mediates antigen uptake and can induce specific immune responses, depending on the ligand involved. Owing to these properties, DC-SIGN is an attracting target for approaches aimed at tailoring the immune response towards specific immunologic outcomes. A multivalent DC-SIGN ligand (Polyman26), containing at its core a fluorescent “rod-like” spacer and able to inhibit DC-SIGN mediated HIV infection in nanomolar concentration, has been recently developed by our group. We investigated the internalization pattern and the ability of Polyman26 to elicit innate immune responses. Results obtained by confocal microscopy indicate that Polyman26 is internalized by DCs via receptor- mediated endocytosis and is then routed to endolysosomal compartments, thus being presented together with MHC class II molecules, with important implications for the development of vaccines. Moreover, Polyman26 up-regulated the production of β-chemokines and pro-inflammatory cytokines (including IL-1β, IL-6, IL-12, and TNFα) as well as the expression of TLR9 and CD40L. These results indicate that glycomimetic DC-SIGN ligands should be further investigated and suggest that these compounds could be used to differentially stimulate immune responses.


Influence of Core β-1,2-Xylosylation on Glycoprotein Recognition by Murine C-type Lectin Receptors and Its Impact on Dendritic Cell Targeting

Brzezicka K, Vogel U, Serna S, Johannssen T, Lepenies B, Reichardt NC

ACS Chem Biol. 2016, 11(8), 2347-56


Targeting antigens to dendritic cell subsets is a promising strategy to enhance the efficacy of vaccines. C-type lectin receptors (CLRs) expressed by dendritic cells are particularly attractive candidates since CLR engagement may promote cell uptake and may further stimulate antigen presentation and subsequent T cell activation. While most previous approaches have involved antibody-mediated CLR-targeting, glycan-based CLR targeting has become more and more attractive in recent years. In the present study, we show that small structural glycan modifications may markedly influence CLR recognition, dendritic cell targeting, and subsequent T cell activation. A biantennary N-glycan (G0) and its analogous O-2 core xylosylated N-glycan (XG0) were synthesized, covalently conjugated to the model antigen ovalbumin, and analyzed for binding to a set of murine CLR-Fc fusion proteins using lectin microarray. To evaluate whether the differential binding of G0 and XG0 to CLRs impacted dendritic cell targeting, uptake studies using murine dendritic cells were performed. Finally, effects of the ovalbumin glycoconjugates on T cell activation were measured in a dendritic cell/T cell cocultivation assay. Our results highlight the utility of glycan-based dendritic cell targeting and demonstrate that small structural differences may have a major impact on dendritic cell targeting efficacy.

Paper NR-BL

Opportunities for glyconanomaterials in personalized medicine

Niels-Christian Reichardt, Manuel Martín-Lomas and Soledad Penadés

Chem. Commun., 2016,52, 13430-13439 DOI: 10.1039/C6CC04445J


In this feature article we discuss the particular relevance of glycans as components or targets of functionalized nanoparticles (NPs) for potential applications in personalized medicine but we will not enter into descriptions for their preparation. For a more general view covering the preparation and applications of glyconanomaterials the reader is referred to a number of recent reviews. The combination of glyco- and nanotechnology is already providing promising new tools for more personalized solutions to diagnostics and therapy. Current applications relevant to personalized medicine include drug targeting, localized radiation therapy, imaging of glycan expression of cancer cells, point of care diagnostics, cancer vaccines, photodynamic therapy, biosensors, and glycoproteomics.

Paper NR

Rapid and efficient synthesis of α(1–2) mannobiosides

José J. Reina, Antonio Di Maio, Javier Ramos-Soriano, Rute C. Figueiredo and Javier Rojo

Org. Biomol. Chem. 2016 DOI: 10.1039/c6ob00083e

α(1,2)mannobiosides with different substituents at the reducing end have been synthesized by a common strategy using benzoyls as the permanent protecting groups and an acetyl as the orthogonal protecting group at position C2 of the glycosyl acceptor. The new synthetic strategy has been performed remarkably reducing the number of purification steps, the time of synthesis (less than 72 hours) and improving the overall yield at least three times with respect to the best procedure described in the literature at the moment. Additionally, this protecting group strategy is compatible with the presence of azido groups and the use of Cu catalyzed azide alkyne cycloaddition (CuAAC) also called “click chemistry” for conjugating the α(1–2)mannobiosides to different scaffolds for the preparation of mannosyl multivalent systems.

Picture Paper Antonio