bg-img1

Synthesis and Microarray-Assisted Binding Studies of Core Xylose and Fucose Containing N‑Glycans

Niels-Reichardt_Partnerslogo_CIC-biomagune

 

 

 

 

 

Katarzyna Brzezicka, Begoña Echeverria, Sonia Serna, Angela van Diepen, Cornelis H. Hokke, and Niels-Christian Reichardt

ACS Chem. Biol. 2015 DOI: 10.1021/cb501023u

Abstract
The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosomeinfected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannosebinding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans. DC-SIGN antagonists were designed combining one selective monovalent glycomimetic ligand with trivalent dendrons separated by a rigid core of controlled length. The design combines multiple multivalency effects to achieve inhibitors of HIV infection, which are active in nanomolar concentration.

niels